If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2-12=31
We move all terms to the left:
c^2-12-(31)=0
We add all the numbers together, and all the variables
c^2-43=0
a = 1; b = 0; c = -43;
Δ = b2-4ac
Δ = 02-4·1·(-43)
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{43}}{2*1}=\frac{0-2\sqrt{43}}{2} =-\frac{2\sqrt{43}}{2} =-\sqrt{43} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{43}}{2*1}=\frac{0+2\sqrt{43}}{2} =\frac{2\sqrt{43}}{2} =\sqrt{43} $
| 6x²-7x=5 | | -(4.5x+3.6)=9(x-2.2 | | -4(x+8)=-3(4+2x) | | .5=x/3 | | 80/x=0.4 | | 12/5=4;s=3 | | 5x2−9x+4=0 | | 7(2h-2)=-1-5h | | 5t^2+9t−18=0 | | )r+2.1=4.7 | | 1.8x+6.5=8.3 | | -4i-2=38 | | 5x(÷2)+10–30= | | (11x+11)°+39°+31°=180° | | 0=-5.3i-2.3i | | 3x7=80 | | 5/12x=1/4. | | 18x+5x-2=3x | | -4x=6x-54 | | 30=-5(6i+6) | | -9x-37=-71 | | 18k^2-33k-50=0 | | 52=7+9k | | x-4=√2x-9 | | 18+z=6 | | z+2.3=5.9 | | 5x-10+4=7x-2 | | 7x-1+7x-1+2x+6=180 | | x^2+30x-675=0 | | 5x+-3(-6x+5)=-130 | | x+23=46 | | 49=14•x |